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Abstract. The non-leptonic two body decays D → PP and D → PV are investigated based on the dia-
grammatic decomposition in a generalized factorization formalism. It is shown that to fit the experimental
data, the SU(3) flavor symmetry breaking effects of the coefficients ais should be considered in D → PP
decay modes. In D → PV decays, the final state hadron structure due to the pseudoscalar and vector
mesons has more important effects on the coefficients ais than the SU(3) symmetry breaking.

1 Introduction

Charmed meson non-leptonic two body decays have been
an interesting subject of research [1–4] for a long time as it
can provide useful information on flavor mixing, CP viola-
tion [5] and strong interactions. The theoretical settlement
of this transition type generally appeals to the factoriza-
tion hypothesis. Empirically, non-factorizable corrections
which result from spectator interactions, final state inter-
actions and resonance effects should be considered. The
non-factorizable corrections are believed to be significant
[6], and they are relatively hard to be calculated because
the charmed quark is not heavy enough to apply the QCD
factorization approach [7] or PQCD approach [8] in a re-
liable manner. Fortunately, a great number of precise ex-
perimental data on charmed meson non-leptonic two body
decays have been accumulated in recent years. Many new
results are expected soon from the dedicated experiments
conducted at BES, CLEO, E791, FOCUS, SELEX and
the two B factories BaBar and Belle. Phenomenological
models based on all kinds of symmetries are quite of im-
portance to guide the theoretical studies and explore new
physics [9–11]. But in some cases, the symmetry breaking
effects can be significantly enhanced.

In the quark-diagrammatic scenario, all two body non-
leptonic weak decays of charmed mesons can be expressed
in terms of six distinct quark-graph contributions [1,12]:
(1) a color-favored tree amplitude T ,
(2) a color-suppressed tree amplitude C,
(3) a W -exchange amplitude E,
(4) a W -annihilation amplitude A,
(5) a horizontal W -loop amplitude P and
(6) a vertical W -loop amplitude D. The P and D dia-
grams play little role in practice because the CKM matrix
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elements have the relation V ∗
csVus ≈ −V ∗

cdVud which will
result in cancellations among these diagrams.

Based on SU(3) flavor symmetry, the T , C, E and
A amplitudes were fitted from the measured D meson
decay modes [10,11]. These amplitudes help one to un-
derstand the generality of charmed meson decays. But
since SU(3) flavor symmetry breaking effects appear to be
important [13,14], these fitted data cannot describe the
specific properties in certain decay modes. In [15], we in-
vestigated in detail both the Cabibbo-allowed and singly
Cabibbo-suppressed D → PV decays based on the dia-
grammatic decomposition in the factorization formalism
and found that the SU(3) symmetry breaking effects in
the D → PV decays are significant. Two sets of solu-
tions were found in the formalism of factorization. The
case (I) solution can provide a satisfactory explanation in
a natural manner on the process D+ → K

0
K∗+ which is

thought to be a puzzle [16]. But the solution is hard to
be explained from the theoretical point of view because
this solution requires such an unexpectedly large correc-
tion from non-factorizable contributions that the strong
phase of aTP

has a deviation around 150◦ from that of
the Wilson coefficients c1. The case (II) solution shows a
relatively small correction from non-factorizable contribu-
tions and hence seems more reasonable from a theoretical
point of view. But the solution predicts a relatively small
branching ratio of the process D+ → K

0
K∗+ in compari-

son with the experimental result. With such a treatment
via solving fifteen equations for extracting out the same
numbers of parameters, it is hard to consider the experi-
mental uncertainties in [15]. To investigate what impacts
the experimental uncertainties will have on the extracted
parameters, it is useful to make a systematic analysis with
taking into account the experimental uncertainties.



392 Yue-Liang Wu et al.: Flavor SU(3) breaking effects in D → PP (V )

In this paper, we will perform a χ2 fitting procedure on
charmed mesons decaying to a pseudoscalar and a vector
meson (D → PV ) and also decaying into two light pseu-
doscalar mesons (D → PP ) by using the quark-graph
description based on a generalized factorization formal-
ism which reflects SU(3) flavor symmetry breaking effects.
Firstly, by dividing these diagrams into factors including
SU(3) flavor symmetry breaking effects and introducing
parameters describing the overall properties, we arrive at
two sets of solutions for the parameters from fitting the
experimental data. In the point of view of the diagram-
matic decomposition, the generalized QCD parameters
ai(i = 1, 2) will be classified into two sets of parameters
aP

i and aV
i . The difference between aP

i and aV
i arises from

the final state hadron structure of the pseudoscalar and
vector mesons in D → PV . In D → PP decays, we will
show that, to fit the experimental data, one should clas-
sify the parameters ai into ad

i and as
i , which means that

the SU(3) flavor symmetry breaking effects are important
and need to be considered in the ais. Thus we can arrive
at the conclusion that the coefficients a1 and a2 depend
on either the final state hadron structure or on SU(3) fla-
vor symmetry breaking effects. For D → PP decay modes,
the SU(3) flavor symmetry breaking effects play an impor-
tant role in the coefficients a1 and a2, while for D → PV
decays, the final state hadron structure becomes more im-
portant for the contributions to the coefficients than the
SU(3) symmetry breaking effect does. The contributions
of SU(3) flavor symmetry breaking effects to a1 and a2
can be neglected in D → PV decay modes. Using the fit-
ted parameters as inputs, we are led to predictions for the
branching ratios of other decay modes which are expected
to be measured in the future. In studying the breaking of
the SU(3) symmetry relations, we are able to quantify the
SU(3) breaking effects. The breaking amount of the SU(3)
symmetry relations in some channels can be significant so
that it becomes unreliable to use the SU(3) relations to
make predictions for some decay modes.

This paper is organized as follows. In Sect. 2, we list
the flavor decomposition of the corresponding mesons and
present the quark-diagram description for the relevant de-
cay modes. In Sect. 3, the parameterized formalism based
on factorization is introduced to investigate the processes.
We then perform a fit procedure in Sect. 4 to extract
the parameters and present predictions for thirty-three
D → PP decay modes and sixty-two D → PV decay
modes. The SU(3) flavor symmetry breaking effects are
discussed in Sect. 5. A short summary and remark is given
in the last section.

2 Notation and quark-diagram formalism

We adopt the following quark contents and phase conven-
tions which have been widely used [10–12,17].
(1) Charmed mesons: D0 = −cu, D+ = cd, D+

s = cs;
(2) Pseudoscalar mesons P : π+ = ud, π0 = (dd−uu)/

√
2,

π− = −du, K+ = us, K0 = ds, K
0

= sd, K− = −su,
η = (−uu − dd + ss)/

√
3, η′ = (uu + dd + 2ss)/

√
6;

(3) Vector mesons V : ρ+ = ud, ρ0 = (dd − uu)/
√

2,
ρ− = −du, ω = (uu + dd)/

√
2, K∗+ = us, K∗0 = ds,

K
∗0

= sd, K∗− = −su, φ = ss.
In the above notation, u, d and s quarks transform as

a triplet of the flavor SU(3) group, and −u, d and s as an
antitriplet, so that mesons form isospin multiplets without
extra signs. In general, the η–η′ mixings are defined as(

η

η′

)
=

(
cos φ − sin φ

sin φ cos φ

)(
η8

η0

)
(1)

with η0 = (uu+dd+ss)/
√

3 and η8 = (−uu−dd+2ss)/
√

6.
For convenience, we have taken the mixing parameter as
φ = 19.5◦ = sin−1(1/3) which is close to the value φ =
15.4◦ extracted from experiment [18].

The partial width Γ for D → PP and D → PV decays
is expressed in terms of an invariant amplitude A. One has

Γ (D → PP ) =
p

8πM2
D

|A|2 (2)

for D → PP and

Γ (D → PV ) =
p3

8πM2
D

|A|2 (3)

for D → PV , where

p =

√
(M2

D − (m1 + m2)2)(M2
D − (m1 − m2)2)

2MD

denotes the center-of-mass 3-momentum of each final par-
ticle.

In D → PP decays, to describe the flavor SU(3) break-
ing effects, a subscript s or d is attributed to the T and
C diagrams to distinguish the initial c quark transitions
to s quark or d quark. The subscript s or d is attached
to the diagrams E and A dominated by the weak process
cq1 → q2q3 when the antiquark q3 is s or d. In D → PV
decays, a subscript P or V is assigned to T and C, which
are induced by c → q3q1q2 with the spectator quark con-
taining in pseudoscalar or vector final meson. The sub-
script P or V is labelled to the E and A graphs which are
dominated by the weak process cq1 → q2q3 when the final
antiquark q3 stays in the pseudoscalar or vector meson.
S is added before E or A to distinguish the exchange or
annihilation graph involved in final singlet state contri-
butions which result from disconnected graphs. The total
contributions of the SE and SA graphs involved in π0

and ρ0 mesons are equal to zero because their contribu-
tions resulting from uu and −dd offset each other due to
the isospin SU(2) symmetry. In the numerical analysis, we
will assume that the contributions of the SEP and SEV

graphs involved in ω and φ mesons are negligibly small
since they seem not to contradict with the Okubo–Zweig–
Iizuka rule. But the amplitude SAV seems to play an im-
portant role in the D+

s → ρ+η and D+
s → ρ+η′ processes

[19]. In the ideal mixing case, the process D+
s → π+ω has

the amplitude representation 1√
2
(AV +AP +2SAP ). Since

ω has a similar quark structure in comparison with η and
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η′, we assume that SAP has an important contribution
in D+

s → π+ω. In the present paper, we shall not con-
sider the processes which receive contributions from SAV

and SAP diagrams resulting from the final state parti-
cles η, η′ or ω. The sign flips in the presentation of some
relevant Cabibbo-favored modes, as well as that of some
doubly Cabibbo-suppressed modes, come from the quark
contents of the final light mesons. In the singly Cabibbo-
suppressed modes, the sign flips may come either from
the quark contents of the final light mesons or from the
CKM matrix element V ∗

cdVud since V ∗
csVus ≈ −V ∗

cdVud and
we choose V ∗

csVus in the calculations. In Tables 4 and 5,
a prime and double prime are added to the diagrams of
singly Cabibbo-suppressed modes and doubly Cabibbo-
suppressed modes respectively to distinguish them from
the Cabibbo-favored ones.

3 Flavor SU(3) symmetry breaking
description in generalized factorization
formalism

To investigate the SU(3) flavor symmetry breaking effects,
we take the formalism of a generalized factorization ap-
proach [2,20].

For D → PP decays, the amplitudes can be written in
the form

Ts,d =
GF√

2
Vq1q2V

∗
cq3

aTs,d
fP1(m

2
Di

− m2
P2

)FDi→P2
0 (m2

P1
), (4)

Cs,d =
GF√

2
Vq1q2V

∗
cq3

aCs,d
fP1(m

2
Di

− m2
P2

)FDi→P2
0 (m2

P1
), (5)

Es,d =
GF√

2
Vq1q3V

∗
cq2

aEs,d
fDi

, (6)

As,d =
GF√

2
Vq2q3V

∗
cq1

aAs,d
fDi . (7)

For D → PV decays, the amplitudes can be written
in the form

TV =
GF√

2
Vq1q2V

∗
cq3

aTV
2fP mDiA

Di→V
0 (m2

P ), (8)

TP =
GF√

2
Vq1q2V

∗
cq3

aTP
2fV mDiF

Di→P
1 (m2

V ), (9)

CV =
GF√

2
Vq1q2V

∗
cq3

aCV
2fP mDiA

Di→V
0 (m2

P ), (10)

CP =
GF√

2
Vq1q2V

∗
cq3

aCP
2fV mDiF

Di→P
1 (m2

V ), (11)

EV,P =
GF√

2
Vq1q3V

∗
cq2

aEV,P
2fDimDi , (12)

AV,P =
GF√

2
Vq2q3V

∗
cq1

aAV,P
2fDimDi . (13)

Di denotes D±, D0 or Ds. F0, F1 and A0 are formfactors
defined in the following formalism:

〈P (p)|q̄γµc|D(pD)〉

=
[
(pD + p)µ − m2

D − m2
P

q2 qµ

]
F1(q2)

+
m2

D − m2
P

q2 qµF0(q2), (14)

〈V (p)|q̄γµ(1 − γ5)c|D(pD)〉
= −i(mD + mV )A1(q2)

(
ε∗µ − ε∗ · q

q2 qµ

)
(15)

+i
A2(q2)

mD + mV
(ε∗ · q)

(
(pD + p)µ − m2

D − m2
V

q2 qµ

)

−i
2mV

q2 (ε∗ · q)A0(q2)qµ − 2V (q2)
mD + mV

εµαβγε∗
αpDβpγ ,

with q = pD − p. fP and fV are decay constants defined
by

〈P (p)|q̄1γ
µγ5q2|0〉 = −ifP pµ, (16)

〈V (p)|q̄1γ
µq2|0〉 = fV mV εµ. (17)

In the naive factorization hypothesis, one has the fol-
lowing equalities:

aTs
= aTd

= aTV
= aTP

= a1(µ), (18)
aCs = aCd

= aCV
= aCP

= a2(µ), (19)

with

a1(µ) = c1(µ) +
1

Nc
c2(µ), (20)

a2(µ) = c2(µ) +
1

Nc
c1(µ), (21)

denoting the relations between the quantities a1,2 and Wil-
son coefficients c1,2. Nc is the number of colors. µ is the
renormalization scale at which c1 and c2 are evaluated. So
a1 and a2 are common real quantities of a certain process
on the quark level. To be more explicit, for decay modes
induced by the c → s transition, a1 and a2 are invariant
among all modes in a naive factorization hypothesis.

However, the naive factorization approach meets dif-
ficulties in describing all charmed meson decays, particu-
larly for the decay modes which are involved in the color-
suppressed diagrams due to the smallness of |a2|. Further-
more, the coefficients a1 and a2 in (18) and (19) depend
on the renormalization scale and the γ5 scheme at the
next to leading order expansion. It is necessary to con-
sider non-factorizable corrections due to hard spectator
interactions, final state interactions and resonance effects
etc. For illustration purposes, we take an simple example
in which a1 and a2 have the following form:

a1(µ) = c1(µ) +
(

1
Nc

+ χ1(µ)
)

c2(µ), (22)

a2(µ) = c2(µ) +
(

1
Nc

+ χ2(µ)
)

c1(µ), (23)

with χ1(µ) and χ2(µ) terms partially denoting the non-
factorizable corrections. With these corrections the equal-
ities (18) and (19) are not yet satisfied because each ai
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should contain terms from different corrections. The cor-
rections can also bring about phase differences among
these coefficients, and then ais (i = Ts,d,V,P , Cs,d,V,P ) be-
come complex. Currently, explicit calculations of the total
corrections are not yet possible. In D → PV decays, we
shall take all ais as independent complex parameters and
assume that the corrections do not depend on individual
decay process at certain scale. In other words, we do not
consider SU(3) flavor symmetry violation contributions to
ais and it is supposed that mass factors, decay constants
and formfactors have taken on the whole SU(3) symmetry
breaking effects, while in D → PP decays, the mass fac-
tors, the formfactors and decay constants fail to account
for the large SU(3) flavor symmetry breaking effects in
D → ππ, D → πK and D → KK. Contributions from the
corrections to naive factorization may cause large SU(3)
symmetry breaking [14]. Two sets of coefficients as

i and
ad

i are introduced to describe the SU(3) flavor symme-
try breaking effects induced by the corrections. In both
D → PP and D → PV decays, the SU(3) symmetry
breaking effects are not considered in the strong phases in
our present analysis.

The exchange and annihilation diagrams have the fol-
lowing expressions in the naive factorization approach:

Es,d =
GF√

2
Vq1q3V

∗
cq2

anf
Es,d

fDi(m
2
P1

− m2
P2

)FP1P2
0 (m2

Di
),

(24)

As,d =
GF√

2
Vq2q3V

∗
cq1

anf
As,d

fDi(m
2
P1

− m2
P2

)FP1P2
0 (m2

Di
),

(25)

EV,P =
GF√

2
Vq1q3V

∗
cq2

anf
EV,P

2fDi
mDi

APV
0 (m2

Di
), (26)

AV,P =
GF√

2
Vq2q3V

∗
cq1

anf
AV,P

2fDi
mDi

APV
0 (m2

Di
). (27)

The formfactors FP1P2
0 (m2

Di
) and APV

0 (m2
Di

) involved in
the above formula are not manifestly relating directly
to experimental measurements. The factorizable contribu-
tions of the exchange and annihilation diagrams are be-
lieved to be small. Through intermediate states, these di-
agrams relate to the tree diagram T and color-suppressed
diagram C [21,22]. Their contributions may be important
and cannot be ignored. In our present considerations, we
use aEi,Ai (i = s, d, V, P ) defined in (6), (7), (12) and (13)
as global parameters to describe mainly the contributions
of intermediate states. By these definitions, the parame-
ters aEi,Ai will have two dimensions of energy in D → PP
and will be dimensionless in D → PV .

4 Numerical analysis and results

The explicit evaluation of the relevant formfactors in the
factorization formula (4), (5) and (8)–(11) is a hard task
because of the non-perturbative long distance effects of
QCD. Various methods, such as QCD sum rules [23,
24], lattice simulations [25,26] and the phenomenological

quark model [27,28], have been developed to estimate the
long distance effects to rather high certainties. The form-
factors of D mesons decaying to light mesons have been
widely discussed in [29–34]. In our present considerations,
we shall use the results of formfactors obtained by Bauer,
Stech and Wirbel [2,29] based on the quark model. They
have been found to be rather successful in describing a
number of processes concerning D mesons. The values of
the relevant formfactors evaluated at q2 = 0 are listed
in Table 1. For the dependence on q2, the formfactors are
assumed to behave as a monopole dominance:

D → P : F0(q2) =
F0(0)

1 − q2/m2
F ∗∗

, (28)

F1(q2) =
F1(0)

1 − q2/m2
F ∗

, (29)

D → V : A0(q2) =
A0(0)

1 − q2/m2
F

, (30)

where mF , mF ∗ and mF ∗∗ are the pole masses given in
Table 1.

It is noted that it is more appropriate view the form-
factors as the relative scaling factors that characterize
one source of SU(3) flavor symmetry breaking effects in
hadronic matrix elements since we take the ais as free
parameters that need to be extracted from experimental
inputs in the present method. The relative ratio between
the formfactors is what we really care about.

The input values for the light pseudoscalar and vector
decay constants are presented in Table 2 [35,36]. These
values generally coincide with experiments. The decay
constants fu

η , fs
η , fu

η′ and fs
η′ involved in the factorization

formula should be defined as follows [35]:

〈0|uγµγ5u|η(′)(p)〉 = ifu
η(′)p

µ, (31)

〈0|sγµγ5s|η(′)(p)〉 = ifs
η(′)p

µ. (32)

Then the quantities fu
η , fs

η , fu
η′ and fs

η′ take in the formal-
ism the form

fu
η =

f8√
6

cos φ +
f0√
3

sin φ, (33)

fs
η =

2f8√
6

cos φ − f0√
3

sin φ, (34)

fu
η′ = − f8√

6
sin φ +

f0√
3

cos φ, (35)

fs
η′ =

2f8√
6

sin φ +
f0√
3

cos φ. (36)

Making use of these definitions, the following factoriza-
tion formulas are adopted in the D → η(η′)V transition
calculation:

2CV (Di → ηV ) (37)

=
GF√

2
Vq1q2V

∗
cq3

aCV
2(fu

η + fs
η )mDiA

Di→V
0 (m2

η),

CV (Di → η′V ) (38)



Yue-Liang Wu et al.: Flavor SU(3) breaking effects in D → PP (V ) 395

Table 1. Relevant formfactors at zero momentum transfer for D → P and D → V transitions and pole masses in BSW model

Decay D → π D → ρ(ω) D → K D → K∗ Ds → K Ds → K∗ Ds → φ D → η/η′ Ds → η/η′

F1 0.692 0.762 0.643 0.681/0.655 0.723/0.704
A0 0.669 0.733 0.634 0.700
mF (GeV) 1.87 1.97 1.87 1.97
mF ∗ (GeV) 2.01 2.11 2.01 2.01 2.11
mF ∗∗ (GeV) 2.47 2.60 2.47 2.47 2.60

Table 2. Values of decay constants in MeV

fπ fK f8 f0 fD fDs fρ fK∗ fω fφ fD∗ fD∗
s

134 158 168 157 200 234 210 214 195 233 230 275

Table 3. Parameters ais fitted from experimental data at 1σ errors. The first entry is for amplitude and
the second entry for the strong phase. as,d,V,P

1 and as,d,V,P
2 denote aTs,d,V,P and aCs,d,V,P respectively

D → PP D → PV

FIT α FIT β FIT A FIT B
χ2/d.o.f. 4.06/4 8.16/4 8.22/7 10.30/7
as
1 1.08 ± 0.04 1.10 ± 0.03 aV

1 1.13 ± 0.08 1.10 ± 0.07
– – – –

ad
1 1.04 ± 0.09 1.09 ± 0.09 aP

1 1.29 ± 0.04 1.29 ± 0.04
(8.73 ± 7.96)◦ (11.98 ± 7.85)◦ (10.04 ± 16.62)◦ (−1.36 ± 13.52)◦

as
2 −0.73 ± 0.04 −0.73 ± 0.04 aV

2 −1.19 ± 0.06 −1.00 ± 0.05
(−26.76 ± 1.60)◦ (−26.25 ± 1.55)◦ (−11.09 ± 20.01)◦ (−10.74 ± 10.31)◦

ad
2 −0.36 ± 0.20 −0.65 ± 0.06 aP

2 −0.78 ± 0.03 −0.77 ± 0.02
(−53.40 ± 28.65)◦ (−35.12 ± 14.50)◦ (−21.75 ± 1.38)◦ (−22.15 ± 2.23)◦

as
E (GeV2) 0.24 ± 0.11 0.25 ± 0.11 aV

E 0.07 ± 0.03 0.26 ± 0.04
(−49.43 ± 20.63)◦ (−58.75 ± 19.48)◦ (−166.87 ± 50.96)◦ (−115.50 ± 12.78)◦

ad
E (GeV2) 1.01 ± 0.08 1.01 ± 0.08 aP

E 0.51 ± 0.02 0.50 ± 0.03
(−120.94 ± 2.92)◦ (−122.02 ± 2.82)◦ (82.82 ± 4.01)◦ (78.55 ± 5.73)◦

as
A (GeV2) – – aV

A 0.52 ± 0.05 0.53 ± 0.05
– – (−76.66 ± 25.78)◦ (−78.24 ± 26.13)◦

ad
A (GeV2) 0.43 ± 0.09 0.46 ± 0.09 aP

A 0.59 ± 0.03 0.60 ± 0.02
(90.04 ± 13.75)◦ (89.94 ± 14.27)◦ (−76.29 ± 41.25)◦ (−77.93 ± 31.52)◦

=
GF√

2
Vq1q2V

∗
cq3

aCV
2(fs

η′ − fu
η′)mDiA

Di→V
0 (m2

η′).

The other parameters used in the numerical calcula-
tion are the masses of relevant mesons, the lifetimes of
charmed mesons and the relevant CKM matrix elements.
We adopt the relevant values given in [37].

For convenience, we may express the complex parame-
ters ai by

ai = |ai|eiδai . (39)

The δai
s characterize the strong phases. One can always

choose δaTs
= 0 in D → PP and δaTV

= 0 in D →
PV so that all the other strong phases are relative to
δaTs

and δaTV
. There are 15 independent parameters to

be extracted from experiment in both D → PP and D →
PV .

To conduct a fit procedure, we construct a χ2 function
which has the following form:

χ2 =
∑

j

(fj(ai) − 〈fj〉)2
σ2

j

, (40)

where 〈fj〉 and σj are the central values and the corre-
sponding errors of the experimentally measured observ-
ables. fj(ai) are the theoretical expressions for the observ-
ables. They are functions of the parameters ai. The set of
ais which minimizes the χ2 function will be regarded as
the best estimated values.

Due to the limited number of data points, we shall
neglect the SU(3) symmetry breaking in the annihilation
diagrams in D → PP decays and take as

A = ad
A in the

fit to make predictions for D+ → K0π+, D+ → K+π0,
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Table 4. Predicted branching ratios for charmed mesons decaying to two pseudoscalar mesons. Single prime and
double primes are added to the representations to denote the singly Cabibbo-suppressed processes and doubly
Cabibbo-suppressed processes. Cs1 and Cs2 , as well as Cd1 and Cd2 , result from the exchange of the final mesons

Decay modes Representation Experimental Present B × 10−2 LP[40]
B × 10−2 FIT α FIT β B × 10−2

K−π+ Ts + Ed 3.80 ± 0.09 3.79 3.80 3.847
K

0
π0 1√

2
(Cs − Ed) 2.28 ± 0.22 2.27 2.24 1.310

K
0
η 1√

3
Cs 0.76 ± 0.11 0.80 0.81

K
0
η ′ − 1√

6
(Cs + 3Ed) 1.87 ± 0.28 1.85 1.88

π+π− −(T ′
d + E ′

d) 0.143 ± 0.007 0.144 0.144 0.151
π0π0 − 1√

2
(C ′

d − E ′
d) 0.084 ± 0.022 0.078 0.097 0.115

K+K− T ′
s + E ′

s 0.412 ± 0.014 0.413 0.413 0.424
K0K

0
E ′

s − E ′
d 0.071 ± 0.019 0.069 0.062 0.130

D0 K+π− −(T ′′
d + E′′

s ) 0.0148 ± 0.0021 0.0150 0.0151 0.033
ηπ0 1√

6
(C ′

s + C ′
d1 − C ′

d2 − 2E ′
d − SE ′) – 0.069 0.068

η ′π0 1√
12

(2C ′
s − C ′

d1 + C ′
d2 + 2E ′

d + 4SE ′) – 0.088 0.091
ηη 1

3
√

2
(2C ′

s + 2C ′
d − 2E ′

s + 2E ′
d + 4SE) – 0.011 0.016

ηη ′ 1√
18

(2C ′
s1

− C ′
s2

− C ′
d1

− C ′
d2

− 4E ′
s − 2E ′

d − 7SE) – 0.026 0.030
K0π0 − 1√

2
(C′′

d − E′′
s ) – 0.002 0.005 0.008

K0η − 1√
3
(C′′

d − E′′
s + SE′′) – 0.001 0.002

K0η ′ 1√
6
(C′′

d + 3E′′
s + 4SE′′) – 0.0 0.0

K
0
π+ Ts + Cs 2.77 ± 0.18 2.76 2.76 2.939

π+π0 − 1√
2
(T ′

d + C ′
d) 0.25 ± 0.07 0.25 0.19 0.185

ηπ+ 1√
3
(T ′

d + C ′
s + C ′

d + 2A ′
d + SA ′) 0.30 ± 0.06 0.34 0.37

η′π+ − 1√
6
(T ′

d − 2C ′
s + C ′

d + 2A ′
d + 4SA ′) 0.50 ± 0.10 0.45 0.42

D+ K+K
0

T ′
s − A ′

d 0.58 ± 0.06 0.62 0.62 0.764
K0π+ −(C′′

d + A′′
s ) – 0.012 0.026 0.053

K+π0 − 1√
2
(T ′′

d − A′′
s ) – 0.021 0.023 0.055

K+η 1√
3
(T ′′

d + SA′′) – 0.011 0.012
K+η′ − 1√

6
(T ′′

d + 3A′′
s + 4SA′′) – 0.005 0.006

K
0
K+ Cs + Ad 3.6 ± 1.1 3.06 3.13 4.623

π+η 1√
3
(Ts − 2Ad − SA) 1.7 ± 0.5 1.05 1.09 1.131

π+η ′ 2√
6
(Ts + Ad + 2SA) 3.9 ± 1.0 4.19 4.43

D+
s π+K0 −(T ′

d − A ′
s) < 0.8 0.24 0.26 0.373

π0K+ − 1√
2
(C ′

d + A ′
s) – 0.047 0.090 0.146

ηK+ 1√
3
(T ′

s + C ′
s + C ′

d − SA ′) – 0.055 0.040 0.300
η ′K+ 1√

6
(2T ′

s + 2C ′
s − C ′

d + 3A ′
s + 4SA ′) – 0.090 0.102

K+K0 −(T ′′
d + C′′

d ) – 0.014 0.010 0.012

D+
s → π+K0 and D+

s → π0K+ etc. The obtained results
will provide a reference for further studies. Note that all
these modes that are yet to be seen are dominated by tree
type diagrams; the SU(3) breaking effects in a

s(d)
A are less

significant. There are 17 experimental data points for 13
parameters in D → PP decays and 22 data points for 15
parameters in D → PV decays, as shown in Tables 4 and
5 respectively. We list in Table 3 the parameters with 1σ
errors obtained in our present analysis. FIT α and FIT

A are obtained without any constraints to the parame-
ters. A large |as

2/ad
2| ≈ 2.0 ratio predicted by FIT α is

an indication of inscrutably large flavor SU(3) breaking
effects. Constraining the ratio to the smallest extent, we
get a FIT β with the ratio |as

2/ad
2| ≈ 1.1. By “the small-

est extent,” we mean that, if we continue to suppress the
ratio down, the predicted branching ratios of some de-
cay modes in Table 4 will be inconsistent with the ex-
perimental data. FIT A predicts an unusually large ratio
|aV

2 /aV
1 | ≈ 1.1, which indicates that the non-factorizable
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Table 5. Predicted branching ratios for charmed mesons decaying to one pseudoscalar and one vector
meson. Single prime and double primes are added to the representations to denote the singly Cabibbo-
suppressed processes and doubly Cabibbo-suppressed processes

Decay modes Representation Experimental Present B(×10−2) LP[40]
B(×10−2) FIT A FIT B B(×10−2)

K∗−π+ TV + EP 6.0 ± 0.5 5.93 5.97 4.656
K−ρ+ TP + EV 10.2 ± 0.8 9.99 9.90 11.201
K

∗0
π0 1√

2
(CP − EP ) 2.8 ± 0.4 2.72 2.81 3.208

K
0
ρ0 1√

2
(CV − EV ) 1.47 ± 0.29 1.49 1.25 0.759

K
∗0

η 1√
3
(CP + EP − EV + SEV ) 1.8 ± 0.4 1.50 1.94

K
0
ω − 1√

2
(CV + EV ) 2.2 ± 0.4 2.11 1.80 1.855

K
0
φ −EP − SEP 0.94 ± 0.11 0.95 0.90

K+K∗− T ′
V + E ′

P 0.20 ± 0.11 0.25 0.25 0.290
K−K∗+ T ′

P + E ′
V 0.38 ± 0.08 0.43 0.43 0.431

K0K
∗0

E ′
V − E ′

P < 0.17 0.08 0.16 0.052
K

0
K∗0 E ′

P − E ′
V < 0.09 0.08 0.16 0.062

π0φ 1√
2
(C ′

P + SE ′
P ) < 0.14 0.12 0.12 0.105

K
∗0

η ′ − 1√
6
(CP + EP + 2EV + 4SEV ) < 0.10 0.004 0.003

D0 ηφ 1√
3
(C ′

P − 2SE ′
P + SE ′

V ) < 2.8 0.035 0.034
π+ρ− −(T ′

V + E ′
P ) – 0.34 0.35 0.485

π−ρ+ −(T ′
P + E ′

V ) – 0.62 0.61 0.706
π0ρ0 1

2 (C ′
P + C ′

V − EP − EV ) – 0.19 0.16 0.216
π0ω 1

2 (C ′
V − C ′

P + E ′
P + E ′

V + 2SE ′
P ) – 0.020 0.003 0.013

ηω − 1√
6
(C ′

P + 2C ′
V + SE ′

V + 4SE ′
P ) – 0.13 0.10

η ′ω 1
2
√

3
(C ′

P − C ′
V + 4SE ′

V − 2SE ′
P ) – 0.0007 0.0003

ηρ0 1√
6
(2C ′

V − C ′
P − SE ′

V ) – 0.0039 0.0015
η ′ρ0 1

2
√

3
(C ′

V + C ′
P + 4SE ′

V ) – 0.012 0.009 0.039
K∗+π− −(T ′′

P + E′′
V ) – 0.029 0.029 0.025

K+ρ− −(T ′′
V + E′′

P ) – 0.016 0.016 0.004
K∗0π0 − 1√

2
(C′′

P − E′′
V ) – 0.0052 0.0064 0.008

K0ρ0 − 1√
2
(C′′

V − E′′
P ) – 0.0069 0.0059

K∗0η − 1√
3
(C′′

P − E′′
P + E′′

V + SE′′
V ) – 0.0030 0.0041

K∗0η′ 1√
6
(C′′

P + 2E′′
P + E′′

V + 4SE′′
V ) – 0.0 0.0

K0ω 1√
2
(C′′

V + E′′
P ) – 0.0076 0.0056 0.002

K0φ E′′
V + SE′′

P – 0.0 0.0006

contributions to aV
2 are of great importance. By constrain-

ing the value of |aV
2 | to be as small as possible, we ob-

tain FIT B with the ratio 0.9. The next leading order
Wilson coefficients c1(mc) = 1.174 and c2(mc) = −0.356
in the naive dimensional regularization (NDR) scheme or
c1(mc) = 1.216 and c2(mc) = −0.424 in the ’t Hooft–
Veltman (HV) scheme are given in [38] when ΛMS =
0.215 GeV. The present relatively large values of |as

2|, |ad
2|,

|aV
2 | and |aP

2 | cannot be explained from (21). They imply
that non-factorizable contributions are of significance in
both D → PP and D → PV decays. To fit the experi-
mental result of Br(D0 → K0K

0
) = (0.071 ± 0.019)%, as

E

should differ much from ad
E . In D → PV decays, because

we have considered the errors of experimental data in the
χ2 fit and used more experimental results as constraints,

the present resulting parameters appear more reasonable
than that of the case (I) solution presented in [15], as the
strong phases of the parameters aP,V

1 and aP,V
2 are not in

contradiction to that predicted from QCD.
We present the resultant predictions for a variety of

charmed meson decay processes in Table 4 for D → PP
decays and in Table 5 for D → PV decays. For com-
parison, we also list the results obtained in [40]. The
predictions for a number of singly and doubly Cabibbo-
suppressed modes can be used to test our present analysis
in the near future.

Note that in the assumption of SAP = 0, we have the
branching ratio 14% for the process D+

s → π+ω, which is
much larger than the experimental result (0.28 ± 0.11)%.
To accommodate the experimental data, a significant con-
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Table 5. (continued)

Decay modes Representation Experimental Present B(×10−2) LP [40]
B(×10−2) FIT A FIT B B(×10−2)

K
∗0

π+ TV + CP 1.92 ± 0.19 1.96 1.96 1.996
π+φ C ′

P − SA ′
P 0.61 ± 0.06 0.64 0.62 0.619

K
0
ρ+ TP + CV 6.6 ± 2.5 7.56 8.43 12.198

π+ρ0 − 1√
2
(T ′

V + C ′
P − A ′

P + A ′
V ) 0.104 ± 0.018 0.088 0.088 0.104

K+K
∗0

T ′
V − A ′

V 0.42 ± 0.05 0.44 0.44 0.436
K

0
K∗+ T ′

P − A ′
P 3.1 ± 1.4 1.43 1.25 1.515

K+ρ0 − 1√
2
(C′′

V − A′′
P ) 0.025 ± 0.012 0.030 0.025 0.029

K∗0π+ −(C′′
P + A′′

V ) 0.036 ± 0.016 0.024 0.022 0.027
D+ K+φ −(A′′

V + SA′′
P ) < 0.013 0.0066 0.0067

π+ω 1√
2
(T ′

V + C ′
P + A ′

V + A ′
P + 2SA ′

P ) – 0.57 0.58
ηρ+ 1√

3
(T ′

P + 2C ′
V + A ′

V + A ′
P + SA ′

V ) – 0.24 0.43
η′ρ+ − 1√

6
(T ′

P − C ′
V + A ′

V + A ′
P + 4SA ′

V ) – 0.15 0.15
π0ρ+ − 1√

2
(T ′

P + C ′
V + A ′

P − A ′
V ) – 0.28 0.35 0.451

K0ρ+ −(C′′
V + A′′

P ) – 0.025 0.022 0.042
π0K∗+ − 1√

2
(C′′

P − A′′
V ) – 0.037 0.036 0.057

K+ω − 1√
2
(C′′

V + A′′
P ) – 0.012 0.011

K∗+η 1√
3
(T ′′

P − A′′
P + A′′

V + SA′′
V ) – 0.015 0.015

K∗+η′ − 1√
6
(T ′′

P + 2A′′
P + A′′

V + 4SA′′
V ) – 0.00014 0.00016

K
∗0

K+ CP + AV 3.3 ± 0.9 3.34 3.42 4.812
K

0
K∗+ CV + AP 4.3 ± 1.4 4.98 4.66 2.467

π+ρ0 1√
2
(AV − AP ) 0.06‡(< 0.07) 0.06 0.06

π+φ TV + SAP 3.6 ± 0.9 3.08 2.93 4.552
π+K∗0 −(T ′

V − A ′
V ) 0.65 ± 0.28 0.33 0.35 0.445

K+ρ0 − 1√
2
(C ′

P + A ′
P ) < 0.29 0.12 0.12 0.198

D+
s K+φ T ′

V + C ′
P + A ′

V + SA ′
P < 0.05 0.032 0.033 0.008

K+ω − 1√
2
(C ′

P − A ′
P − 2SA ′

P ) – 0.40 0.39 0.178
K0ρ+ −(T ′

P − A ′
P ) – 0.91 0.77 1.288

π0K∗+ − 1√
2
(C ′

V + A ′
V ) – 0.13 0.13 0.076

ηK∗+ 1√
3
(T ′

P + 2C ′
V + A ′

P − A ′
V − SA ′

V ) – 0.038 0.047 0.146
η ′K∗+ 1√

3
(2T ′

P + C ′
V + 2A ′

P + A ′
V + 4SA ′

V ) – 0.068 0.059
K∗0K+ −(T ′′

V + C′′
P ) – 0.0015 0.0015 0.006

K∗+K0 −(T ′′
P + C′′

P ) – 0.0076 0.0085 0.018

‡ The central value of the E791 experiment [39].

tribution from the SAP diagram, i.e. SAP ∼ −Ap, should
be introduced [15].

5 SU(3) flavor symmetry breaking

As pointed out in [13,14], SU(3) breaking effects in
charmed meson decays appear to be important. The vi-
olation may come from the finite strange quark mass, the
final state interactions and resonances. In the SU(3) fla-
vor symmetry limit, there are a number of relations among
the different decay modes. Based on the above extracted

values for the parameters, we can discuss how large are
the SU(3) breaking effects in the D → PP and D → PV
decays.

We present these relations in Table 6 for D → PP and
Table 7 for D → PV . The left hand side (LHS) values
of the relations whose deviation from unit represents the
breaking amounts of the SU(3) flavor symmetry relations
are listed in the second columns.

It is noted that though these relations deviating from
unit reflect the SU(3) flavor symmetry breaking effects,
the ones composed of three decay modes and those com-
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Table 6. SU(3) flavor symmetry relations of D → PP decay modes and breaking of
the relations. λ = V ∗

csVus/V ∗
csVud ≈ 0.226. κ = V ∗

csVus/V ∗
cdVus ≈ 4.446

SU(3) symmetry relations LHS of relations
FIT α FIT β

A(D0→π+π−)+
√

2A(D0→π0π0)√
2A(D+→π+π0)

= 1 1.00 1.00

A(D0→K−π+)+
√

2A(D0→K
0
π0)

A(D+→K
0
π+)

= 1 1.00 1.00

λA(D+→π+K
0)+κA(D+→K0π+)√

2κA(D+→K+π0)
= 1 0.49 0.79

λA(D+→K
0
π+)+

√
2κA(D+→K+π0)

κA(D+→K0π+) = 1 1.56 1.11
√

2κA(D+→π0K+)−κA(D+→K0π+)
λA(D+→K

0
π+)

= 1 2.21 1.82

A(D0→K+K−)
κA(D0→K+π−) = 1 1.27 1.24

κA(D0→K+π−)
A(D0→π+π−) = 1 1.43 1.43

κA(D0→K+π−)
λA(D0→K−π+) = 1 1.20 1.24

λA(D0→K
0
π0)

A(D0→π0π0) = 1 1.26 1.12

λA(D0→K
0
π0)

κA(D0→K0π0) = 1 1.78 1.10

A(D+→K+K
0)√

2κA(D+→K+π0)
= 1 0.89 0.86

√
2κA(D+→K+π0)
A(D+

s →K0π+)
= 1 1.24 1.24

λA(D+
s →K

0
K+)√

2A(D+
s →K+π0)

= 1 1.34 0.98

κA(D+→K0π+)
λA(D+

s →K+π0)
= 1 1.08 1.14

λA(D+→K
0
π+)√

2A(D+→π0π+)
= 1 0.55 0.67

posed of two decay modes have different sources of break-
ing terms. To be clear, we take the expressions

|λA(D+ → π+K
∗0

) +
√

2A(D+ → π+ρ0)|
|λ√

2A(D+
s → π+ρ0)|

and
|A(D0 → K+K∗−)|
|A(D0 → π+ρ−)|

as examples. We have

|λA(D+ → π+K
∗0

) +
√

2A(D+ → π+ρ0)|
|λ√

2A(D+
s → π+ρ0)| (41)

= |(TV + CP )(D+ → π+K
∗0

)
−(TV + CP − AP + AV )(D+ → π+ρ0)|

/|AV (D+
s → π+ρ0) − AP (D+

s → π+ρ0)|,
|A(D0 → K+K∗−)|
|A(D0 → π+ρ−)| (42)

= |TV (D0 → K+K∗−) + EP (D0 → K+K∗−)|
/| − TV (D0 → π+ρ−) − EP (D0 → π+ρ−)|.

In the limit of SU(3) flavor symmetry, we have the follow-
ing relations:

TV (D+ → π+K
∗0

) = TV (D+ → π+ρ0), (43)

CP (D+ → π+K
∗0

) = CP (D+ → π+ρ0), (44)
AV (D+ → π+ρ0) = AV (D+

s → π+ρ0), (45)
AP (D+ → π+ρ0) = AP (D+

s → π+ρ0), (46)
TV (D0 → K+K∗−) = TV (D0 → π+ρ−), (47)
EP (D0 → K+K∗−) = EP (D0 → π+ρ−), (48)

which make the ratios (41) and (42) equal to one. But
from (8)–(13), one can find that relations in (43)–(48) are
in general not valid. The different masses of the charmed
mesons and the final light mesons, and the different values
of formfactors and decay constants can break the relations
in (43)–(48), and thus break the SU(3) flavor symmetry
relations in (41) and (42). In addition, by comparing with
(41) and (42), one can see that the relations concerning
only two decay modes represent the relative SU(3) flavor
symmetry breaking amounts of the same diagrams which
we call the main diagrams for convenience in later use,
while the relations consisting of three decay modes contain
additional SU(3) flavor symmetry breaking effects from
the other diagrams. So in the relations containing three
decay modes, if the SU(3) flavor symmetry breaking con-
tributions of the other diagrams have comparable amounts
in comparison with the main diagrams, then the relations
will be broken down badly. The main diagrams |T +C| in
D+ → π+K

0
, |AV −AP | in D+

s → π+ρ0 and |TV +CP | in
D+ → π+K

∗0
are relatively small, which usually leads
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Table 7. SU(3) flavor symmetry relations of D → PV decays and breaking of the
relations. λ = V ∗

csVus/V ∗
csVud ≈ 0.226. κ = V ∗

csVus/V ∗
cdVus ≈ 4.446

SU(3) symmetry relations LHS of relations
FIT A FIT B

A(D0→π+K∗−)+
√

2A(D0→π0K
∗0)

A(D+→π+K
∗0)

= 1 1.00 1.00

A(D0→ρ+K−)+
√

2A(D0→ρ0K
0)

A(D+→K
0
ρ+)

= 1 1.00 1.00

A(D0→K
0
φ)−A(D+

s →π+φ)
A(D0→π+K∗−) = 1 1.00 1.00

A(D0→π+K∗−)+A(D0→K
0
φ)

A(D+
s →π+φ)

= 1 0.99 0.99

A(D0→π+K∗−)−A(D+
s →π+φ)

A(D0→K
0
φ)

= 1 1.00 1.00

λ
√

2A(D+
s →π+ρ0)+

√
2A(D+→π+ρ0)

λA(D+→π+K
∗0)

= 1 0.88 0.88

λA(D+→π+K
∗0)+

√
2A(D+→π+ρ0)

λ
√

2A(D+
s →π+ρ0)

= 1 0.60 0.59

λA(D+→π+K
∗0)+λ

√
2A(D+

s →π+ρ0)√
2A(D+→π+ρ0)

= 1 1.10 1.10

λ
√

2A(D+
s →π+ρ0)−√

2A(D+→π0ρ+)

λA(D+→ρ+K
0)

= 1 1.03 1.03

λA(D+→ρ+K
0)+

√
2A(D+→π0ρ+)

λ
√

2A(D+
s →π+ρ0)

= 1 1.48 1.10

λ
√

2A(D+
s →π+ρ0)−λA(D+→ρ+K

0)√
2A(D+→π0ρ+)

= 1 0.95 0.97

λA(D+
s →K+K

∗0)+A(D+→K+K
∗0)

λA(D+→π+K
∗0)

= 1 0.58 0.57

λA(D+→π+K
∗0)−A(D+→K+K

∗0)
λA(D+

s →K+K
∗0)

= 1 1.17 1.16

λA(D+
s →K+K

∗0)−λA(D+→π+K
∗0)

A(D+→K+K
∗0)

= 1 0.96 0.97

λA(D+
s →K

0
K∗+)+A(D+→K

0
K∗+)

λA(D+→ρ+K
0)

= 1 1.09 1.19

λA(D+→ρ+K
0)−A(D+→K

0
K∗+)

λA(D+
s →K

0
K∗+)

= 1 1.01 0.97

λA(D+
s →K

0
K∗+)−λA(D+→ρ+K

0)

A(D+→K
0
K∗+)

= 1 0.98 0.96

λA(D+
s →K

0
K∗+)+

√
2A(D+

s →K∗+π0)

λ
√

2A(D+
s →π+ρ0)

= 1 1.42 1.31

λ
√

2A(D+
s →π+ρ0)+

√
2A(D+

s →K∗+π0)

λA(D+
s →K

0
K∗+)

= 1 0.92 0.95

λ
√

2A(D+
s →π+ρ0)+λA(D+

s →K
0
K∗+)√

2A(D+
s →K∗+π0)

= 1 1.11 1.07

A(D+
s →K0ρ+)

A(D+→K
0
K∗+)

= 1 0.91 0.89

A(D+
s →π+K∗0)

A(D+→K+K
∗0)

= 1 0.93 0.94

A(D0→K+K∗−)
κA(D0→K+ρ−) = 1 1.05 1.05

λA(D0→π+K∗−)
A(D0→π+ρ−) = 1 1.05 1.05

A(D0→K+K∗−)
λA(D0→π+K∗−) = 1 1.14 1.14

A(D0→K−K∗+)
κA(D0→π−K∗+) = 1 1.08 1.08

λA(D0→K−ρ+)
A(D0→π−ρ+) = 1 1.09 1.09

A(D0→K−K∗+)
λA(D0→K−ρ+) = 1 1.08 1.08
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to a significant breaking for the relations when taking
A(D+ → π+K

0
), A(D+

s → π+ρ0) and A(D+ → π+K
∗0

)
as denominators. We present explicitly some of these re-
lations calculated from the parameters of FIT α and FIT
A as follows:

|√2κA(D+ → K+π0) − κA(D+ → K0π+)|
|λA(D+ → K

0
π+)|

= 2.21,

(49)

|λA(D+ → π+K
∗0

) +
√

2A(D+ → π+ρ0)|
|λ√

2A(D+
s → π+ρ0)| = 0.60,

(50)

|λA(D+
s → K

0
K∗+) +

√
2A(D+

s → K∗+π0)|
|λ√

2A(D+
s → π+ρ0)| = 1.42,

(51)

|λA(D+
s → K+K

∗0
) + A(D+ → K+K

∗0
)|

|λA(D+ → π+K
∗0

)|
= 0.58.

(52)

It is obvious that the SU(3) flavor symmetry analysis is
not applicable to such processes.

Besides the mass factors, the formfactors and decay
constants, one should also consider the contributions of
ai factors when studying the SU(3) symmetry breaking
effects in D → PP decay modes. The situations are more
complicated than that in D → PV decay modes. General
speaking, the SU(3) flavor symmetry breaking effects are
more important in D → PP decays. The first two relations
in Tables 6 and 7 still are conserved because all the decay
modes in them form an isospin triangle respectively.

6 Summary and conclusion

We have performed a χ2 fitting analysis on the D → PP
and D → PV decays in the formalism of the factoriza-
tion hypotheses. To fit the experimental data, it is vital to
consider the SU(3) flavor symmetry breaking effects of the
coefficients ais in the D → PP decay modes. In D → PV
decays, the final state hadron structure of the pseudoscalar
and vector mesons has a more important impact on the
coefficients ais than the SU(3) symmetry breaking ef-
fects. The non-factorizable contributions, as well as that
of the exchange and annihilation diagrams, are found to
be important in these decays. In the formalism of the re-
lations obtained in the SU(3) symmetry limit, the total
SU(3) symmetry breaking amount of certain processes in
D → PP can reach 120% when the three symmetry break-
ing effects due to ai factors, mass factors and due to form-
factors and decay constants are to be coherently added.
The total breaking amount of some processes in D → PV
can add up to 50%. The breaking amount of the SU(3)
symmetry relations in some channels is so significant that
it becomes unreliable to use the SU(3) relations to make
predictions for some decay modes. More precise measure-
ments on the process D+ → K

0
K∗+ are important for un-

derstanding the SU(3) symmetry breaking effects and non-
factorizable contributions. As an independent check, it is
useful to measure the process D+

s → K0ρ+. The processes
D0 → π+ρ−, D0 → π−ρ+, D0 → π0ρ0, D+ → π+ω,
D+ → π0ρ+, D+ → K0ρ+, D+ → π0K∗+, D+

s → K+ω
and D+

s → π0K∗+ are predicted to be at the experimental
sensitivity. It is expected that one may explore the final
hadron structure and SU(3) flavor symmetry breaking ef-
fects in D → PP and D → PV decays in BES, CLEO-c,
BaBar and Belle.
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